

MATHEMATICS HIGHER LEVEL PAPER 1

Thursda	y 7	May	2009	(afternoon)
---------	-----	-----	------	-------------

2 hours

	C	andio	date	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 6]	
	Consider the complex numbers $z = 1 + 2i$ and $w = 2 + ai$, where $a \in \mathbb{R}$.	
	Find a when	
	(a) $ w =2 z $;	[3 marks]
	(b) $\operatorname{Re}(zw) = 2\operatorname{Im}(zw)$.	[3 marks]

-3-

2. [Maximum mark: 5]

The diagram below shows a curve with equation $y = 1 + k \sin x$, defined for $0 \le x \le 3\pi$.

The point $A\left(\frac{\pi}{6}, -2\right)$ lies on the curve and B(a, b) is the maximum point.

(a) Show that k = -6.

[2 marks]

(b) Hence, find the values of a and b.

[3 marks]

3. [Maximum mark: 5]

Le	t ¿	g	(x	:)	=	lc	9	55	2	21	0	g	3)	r		F	i	n	d	tl	16	1	pr	О	d	u	et	C	f	tŀ	ne	2	ze	rc	S	C	f	g														
																																																				•
																		•																					 •													•
																														-					-								-					 				
																																																 . .				
																																																 . .				
																																																 . .				
	•		•	•		•	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	 •	•	•	•	•	 •	•	•	•	 •	•	•	•	•

4. [Maximum mark: 6]

Consider the matrix $A = \begin{pmatrix} e^x & e^{-x} \\ 2 + e^x & 1 \end{pmatrix}$, where $x \in \mathbb{R}$.

Find the value of x for which A is singular.

5. [Maximum mark: 5]

(a)	Show that arctan	$\left(\frac{1}{2}\right)$	+ arctan	$\left(\frac{1}{3}\right)$	$=\frac{\pi}{4}$.		[2 marks]
-----	------------------	----------------------------	----------	----------------------------	--------------------	--	-----------

(b)	Hence, or otherwise, find the value of $\arctan(2) + \arctan(3)$.	[3 marks]

6. [Maximum mark: 5]

The diagram below shows two straight lines intersecting at O and two circles, each with centre O. The outer circle has radius R and the inner circle has radius r.

Consider the shaded regions with areas A and B. Given that A:B=2:1, find the **exact** value of the ratio R:r.

7.	[Maximum	mark:	7
<i>1</i> •	1 IVI UN IIII UIII	mur.	/

Cons	sider the functions f and g defined by $f(x) = 2^{\overline{x}}$ and $g(x) = 4 - 2^{\overline{x}}$, $x \neq 0$.	
(a)	Find the coordinates of P, the point of intersection of the graphs of f and g .	[3 marks]
(b)	Find the equation of the tangent to the graph of f at the point P.	[4 marks]

8. [Maximum mark: 6

A triangle has vertices A(1, -1, 1), B(1, 1, 0) and C(-1, 1, -1).

Show that the area of the triangle is $\sqrt{6}$.

																		 -									 							

- **9.** [Maximum mark: 7]
 - (a) Let a > 0. Draw the graph of $y = \left| x \frac{a}{2} \right|$ for $-a \le x \le a$ on the grid below. [2 marks]

(b) Find k such that $\int_{-a}^{0} \left| x - \frac{a}{2} \right| dx = k \int_{0}^{a} \left| x - \frac{a}{2} \right| dx$. [5 marks]

10. [Maximum mark: 8]

The diagram below shows a solid with volume V, obtained from a cube with edge a > 1 when a smaller cube with edge $\frac{1}{a}$ is removed.

diagram not to scale

Let
$$x = a - \frac{1}{a}$$
.

(a) Find V in terms of x.

[4 marks]

(b)	Hence or otherwise, show that the only value of a for which $V = 4x$ is $a = \frac{1+x}{2}$	$\frac{\sqrt{5}}{}$.	[4 marks]
-----	---	-----------------------	-----------

 	 	 						 										 							-
																								•	•
 																									•
 	 	 		 •		 •						•	•			•	 •	 •	•			•			•
 	 	 	٠					 •									 ٠						 •	 •	•

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 20]

Let f be a function defined by $f(x) = x - \arctan x$, $x \in \mathbb{R}$.

(a) Find f(1) and $f(-\sqrt{3})$.

[2 marks]

(b) Show that f(-x) = -f(x), for $x \in \mathbb{R}$.

[2 marks]

(c) Show that $x - \frac{\pi}{2} < f(x) < x + \frac{\pi}{2}$, for $x \in \mathbb{R}$.

[2 marks]

(d) Find expressions for f'(x) and f''(x). Hence describe the behaviour of the graph of f at the origin and justify your answer.

[8 marks]

(e) Sketch a graph of f, showing clearly the asymptotes.

[3 marks]

(f) Justify that the inverse of f is defined for all $x \in \mathbb{R}$ and sketch its graph.

[3 marks]

12. [Maximum mark: 17]

- (a) Consider the set of numbers a, 2a, 3a, ..., na, where a and n are positive integers.
 - (i) Show that the expression for the mean of this set is $\frac{a(n+1)}{2}$.
 - (ii) Let a = 4. Find the minimum value of n for which the sum of these numbers exceeds its mean by more than 100.

[6 marks]

- (b) Consider now the set of numbers $x_1, ..., x_m, y_1, ..., y_n$ where $x_i = 0$ for i = 1, ..., m and $y_i = 1$ for i = 1, ..., n.
 - (i) Show that the mean M of this set is given by $\frac{n}{m+n}$ and the standard deviation S by $\frac{\sqrt{mn}}{m+n}$.
 - (ii) Given that M = S, find the value of the median.

[11 marks]

13. [Total Mark: 23]

Part A [Maximum mark: 9]

If z is a non-zero complex number, we define L(z) by the equation

$$L(z) = \ln |z| + i \arg(z), \ 0 \le \arg(z) < 2\pi$$
.

(a) Show that when z is a positive real number, $L(z) = \ln z$.

[2 marks]

- (b) Use the equation to calculate
 - (i) L(-1);
 - (ii) L(1-i);
 - (iii) L(-1+i).

[5 marks]

(c) Hence show that the property $L(z_1z_2) = L(z_1) + L(z_2)$ does not hold for all values of z_1 and z_2 .

[2 marks]

Part B [Maximum mark: 14]

Let f be a function with domain \mathbb{R} that satisfies the conditions,

$$f(x+y) = f(x)f(y)$$
, for all x and y and $f(0) \neq 0$.

(a) Show that f(0) = 1.

[3 marks]

(b) Prove that $f(x) \neq 0$, for all $x \in \mathbb{R}$.

[3 marks]

(c) Assuming that f'(x) exists for all $x \in \mathbb{R}$, use the definition of derivative to show that f(x) satisfies the differential equation f'(x) = k f(x), where k = f'(0).

[4 marks]

(d) Solve the differential equation to find an expression for f(x).

[4 marks]

